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Recent advances in diffusion Monte Carlo (DMC) are reviewed within the context of the
vibrational motions of systems that undergo large amplitude motions. Specifically, the authors
describe the DMC approach for obtaining the ground state wave function and zero-point
energy (ZPE) of the system of interest, as well as extensions to the method for evaluating
probability amplitudes, rotational constants, vibrationally excited states and methods for
obtaining vibrational spectra. The discussion is framed in terms of the properties of several
systems of current experimental and theoretical interest, specifically complexes of neon atoms
with OH or SH, H3O

�
2 , H5O

þ
2 , and CHþ

5 . The results of the DMC simulations provide the
information necessary to characterize the extent of delocalization of the probability amplitudes,
even in the ground vibrational states. Methods for evaluating expectation values and vibra-
tionally excited states are explored, and, when possible, the results are compared with those
from other approaches. Finally, the methods for evaluating intensities are described and
existing and future challenges for the approach are reviewed.
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1. Introduction

A significant challenge in chemical physics appears in making connections between
the positions and intensities of vibrational transitions, observed through spectroscopic
measurements, and properties of molecules. For molecules that undergo small
amplitude vibrations near an equilibrium configuration, normal mode treatments,
or perturbation theory based on a zero-order normal mode representation of the
vibrational Hamiltonian, have been shown to be extremely effective [1, 2]. On the
other hand, highly anharmonic species that undergo large amplitude vibrational
motions are not well suited for such an approach as the zero-point energy (ZPE)
often exceeds the barriers that separate minima on the potential. Classic examples of
such systems are complexes that are held together by van der Waals or hydrogen
bonding interactions. Even the simplest of these complexes explore a large range of
angular motion when the complex is in its ground vibrational state. For example, the
ground state of ArHF has non-zero amplitude in the Ar–FH as well as the Ar–HF
minima on the H6(4,3,2) potential of Hutson [3, 4]. As the complexes become larger
or the molecules that comprise them become non-linear, the number of minima
increases as can the delocalization of the ground state wave function. In addition to
being highly fluxional, the fact that they are held together by weak intermolecular inter-
actions, places the dissociation energy at several kilocalories per mole. This often results
in the zero-point level sampling highly anharmonic regions of the potential.

A second class of systems that has received considerable attention recently are
molecular ions like H3O

�
2 , H5O

þ
2 , and CHþ

5 . In contrast to the van der Waals systems,
these ions are bound by 25, 32, and 40 kcalmol�1, relative to the dissociation products
of H2OþOH� [5], H2OþH3O

þ [6], and CHþ
3 þH2 [7], respectively. On the other

hand, all three display large amplitude vibrational motions in their ground states.
They are of particular interest due to their importance in interstellar chemistry
as well as important intermediates in aqueous chemistry. They have also been subjected
to spectroscopic studies of the vibrational spectra in the 600–3800 cm�1 region
[8–17]. High-resolution, rotationally resolved spectra in the 2800–3100 cm�1 region
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have been reported for CHþ
5 [18, 19]. There has also been considerable theoretical and

computational work performed on all of these species. A thorough review of that work
is beyond the scope of the present review, and readers are referred to [20] for a recent
discussion of work on CHþ

5 and to [21] for a review on protonated water clusters.
As we consider the theoretical and computational approaches that can be used to

investigate vibrational energy levels and wave functions, the most powerful approaches
are those based on the variational theorem. Large-scale variational calculations of
systems with more than four atoms and that sample multiple minima on the potential
surface, even in their ground states, are approaching or exceeding our current capabil-
ities. In addition, even if one can obtain an exact solution to the time-independent
Schrödinger equation, interpreting the massive amounts of numerical data can be
challenging. That said, the MULTIMODE approach of Bowman and co-workers [22],
has been applied to studies of the vibrational motions of CHþ

5 , H5O
þ
2 , and H3O

�
2

[19, 23–28]. The cc-VSCF approach of Gerber and co-workers has been applied to
complexes of water molecules with Cl�, Hþ, and F� [29, 30].

An alternative approach for investigating the vibrational ground state of an arbitrary
molecular system is the diffusion Monte Carlo (DMC) method [31]. This method
employs a Monte Carlo approach for solving the imaginary-time, time-dependent
Schrödinger equation. In contrast to the variational approaches, this method does
not employ a basis set and as a result is ideally suited for systems like those mentioned
earlier, for which there does not exist an obvious zero-order description of the vibra-
tions in terms of a direct product basis. While DMC is entirely general, it suffers
from the fact that it relies on imaginary-time propagations to generate the ground
state wave function and ZPE of the system of interest. This makes studies involving
rotationally or vibrationally excited states less straightforward.

In this review, the focus is on extensions and modifications to the DMC approach.
These are discussed in the context of the three molecular ions, H3O

�
2 , H5O2þ and

CHþ
5 , as well as complexes of neon atoms with OH or SH. The DMC studies of

larger rare gas clusters, in particular those involving doped helium droplets [32],
as well as neutral water clusters [33–36], and complexes of rare gas atoms with
closed-shell species [37] have been reported over the past several years. In addition,
extensive work has been performed to apply these approaches to electronic structure
problems. The work in this area has been reviewed in the Recent Advances in
Quantum Monte Carlo [38, 39] series of books.

2. Systems

Before describing the DMC approaches, the systems that are used to illustrate these
approaches are briefly reviewed.

2.1. NenEXH complexes

The spectroscopy of complexes of rare-gas atoms with OH or SH was reviewed by
Carter et al. in 2000 [40] and more recently by Heaven [41]. In the studies presented
here, the Nen �XH complexes are modeled by pair-wise sums of Ne–Ne interactions
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[42] and Ne–XH interactions [43, 44]. To illustrate the range of motions of these
complexes, in figure 1 we plot the energies of various stationary points on the
Ne2XH ~A–state potentials. For calibration, the ZPEs of the complexes are plotted
with dashed lines. In both of the systems, the minimum energy structure is T-shaped
with the XH pointing at the center of the neon dimer. We focus on these systems as
they are the ones for which we have also performed fully converged variational calcula-
tions [45]. As such, they provide a point of comparison for the DMC methods.

2.2. H3O
2
2 and H5O

1
2

Both H3O
�
2 and H5O

þ
2 are chemically more interesting species as they provide examples

of the smallest possible aqueous complexes of the hydroxide and hydronium ions. For
H3O

�
2 , the best available surface is one that was obtained by Bowman and co-workers

at the CCSD(T)/aug-cc-pVTZ level of theory/basis. This potential is based on 66 965
electronic energies that were fit to a high-order expansion in functions of the
atom–atom distance coordinates [25]. More recently, this surface has been extended
to provide a global surface that allows for dissociation to OH� and H2O [27]. In the
case of H5O

þ
2 , several surfaces have been used for DMC studies. Until recently,

the best available surface for this system was the OSS3(p) [46, 47] surface of Ojame,

Ne–Ne–SH

Ne–Ne–OH

Ne–SH–Ne

Ne–OH–Ne

Ne2–SH

(a)

(b)

Ne2–OH

Ne2–HS

Ne2–HO

Figure 1. Energies of low-lying stationary points on the (a) Ne2SH and (b) Ne2OH potentials. The ZPEs of
these systems are plotted with dashed lines.
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Shavitt, and Singer. This surface has been used by Cho and Singer [23, 48] for DMC
simulations of H5O

þ
2 , while an earlier version of the surface was used in DMC studies

by Buch [49] and co-workers and by Mella and Clary [36] in the studies of H5O
þ
2 ,

its deuterated analogues and larger protonated water clusters. In our DMC studies
of H5O

þ
2 , we employed the potential of Huang et al. [50]. As for H3O

�
2 , this potential

is a fit of 48 189 electronic energies, calculated at the CCSD(T)/aug-cc-pVTZ level of
theory/basis, to a polynomial expansion in functions of the atom–atom distances.

Based on this potential for H3O
�
2 , as well as electronic structure calculations [5, 51],

the minimum energy structure has the central hydrogen slightly closer to one of the two
oxygen atoms, as is depicted in figure 2(a). There is a low-lying saddle point, in the
center of figure 2(a), in which the central hydrogen is equidistant from the two
oxygen atoms. As this saddle point is only 68.5 cm�1 above the global minimum
on the potential surface used in our calculations [27], and the normal mode that roughly
connects the minimum to this saddle point has a frequency of 1569 cm�1, or 23 times
the barrier height, it is anticipated that even in the vibrational ground state, the
probability amplitude will be delocalized across this barrier [51]. In addition, there
is a low-frequency torsion mode, which corresponds to the HOOH torsion and is
analogous to the corresponding motion in hydrogen peroxide. The barriers in the
cis- and trans-configuration are 376 and 166 cm�1 above the potential minimum [25].
Again, it is anticipated that the ground vibrational state will be highly delocalized
in this coordinate.

To approximate the extent of delocalization, we compute the harmonic ZPE at each
stationary point, where we take this quantity to be half the sum of the real frequencies
at each configuration. The differences between the sum of the potential energy at the
saddle points and the corresponding ZPE and the ZPE at the potential minimum are
plotted with dashed lines. As is seen, when zero-point effects are included in this
way, the minimum energy structure corresponds to the one in which the central
hydrogen is equidistant from the two oxygen atoms. This structure is often referred
to as the Zundel structure [52]. In addition, the trans-barrier height drops to 80 cm�1,
less than half of the 206 cm�1 torsion frequency at the potential minimum. The cis-
barrier also drops, to 318 cm�1, but this one is considerably above the torsion
frequency. The above considerations lead to the expectation that the ground state
wave function will have a significant amplitude in the Zundel structure as well as
across the trans-barrier, but will be small in the region of the cis-barrier. These expecta-
tions are borne out in the projections of the DMC probability amplitudes onto these
coordinates [27].

The equilibrium structure of H5O
þ
2 is shown in figure 2(b). In contrast to H3O

�
2 , the

minimum energy structure of H5O
þ
2 has the central hydrogen equidistant from both

oxygen atoms and the OHO is nearly linear, e.g. the Zundel structure. For this
system, the low-frequency motions correspond to the inversion motions of the two
water groups. These can be thought of as being analogous to the inversion mode in
H3O

þ or more familiarly in NH3. The barrier for this motion at one end of the ion
is 164 cm�1, 98 cm�1 with ZPE included. There is also a low-frequency torsional
mode. Here the barriers along this coordinate are 213 and 434 cm�1 in the trans- and
cis-configurations, respectively. They drop to 154 and 267 cm�1, when ZPE is included.
As Wales has pointed out [53], the topology of this potential is complicated by the
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a
aa
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0

213

434
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0
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318
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(a)

(b)

(c)

Figure 2. Energies and structures of low-lying stationary points on the (a) H3O
�
2 [25], (b) H5O

þ
2 [25] and

(c) CHþ
5 [7]. Solid lines provide the energies on the potential surfaces. Dashed lines give the sum of the

electronic energy and the harmonic ZPE at these points. All plots are shown on the same energy scale and
the energies are reported in cm�1. The energy at the potential minimum is zero.
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fact that the two minimum energy configurations can be connected either through the
low-energy flipping barriers or by torsion motion.

As is demonstrated by the above discussion, both H3O
�
2 and H5O

þ
2 have multiple

low-lying potential minima, connected through low-energy barriers, making them
good candidates for the DMC treatments.

2.3. CH1
5

The final system we use to illustrate DMC approaches is CHþ
5 . This system has been of

extensive and long-term interest both due to its importance in interstellar chemistry [54],
and as the simplest of the carbocations [55]. While it has been investigated spectro-
scopically by a number of groups, its high resolution spectrum has not, as yet, been
assigned, although the features in a recently reported lower-resolution spectrum can
be understood [9, 19, 26]. As with the water systems, we use a non-global version
of the surface of Bowman and co-workers [7, 56, 57]. The potential is a polynomial
fit of many electronic energies, calculated at the CCSD(T)/aug-cc-pVTZ level of
theory/basis. This surface reflects the full permutation/inversion symmetry of CHþ

5 .
The minimum energy structure of CHþ

5 is shown in the middle figure 2(c) and will be
referred to as the Cs(I) structure. It has Cs symmetry with three of the hydrogen atoms
lying in the same plane as the carbon atom. They have been labeled a, b and c.
The remaining two carbon atoms are symmetrically arranged above and below this
plane and are labeled d and e. Examination of the equilibrium geometry shows that
the hydrogen atoms labeled c–e are roughly equidistant from the carbon atom, with
CH distances ranging from 1.088–1.108Å, while the hydrogen atoms labeled a and
b are 1.197 Å from the carbon atom [7]. This difference in the bond lengths, reflecting
differences in bonding, has led workers to consider CHþ

5 as a CHþ
3 unit, bonded to

a H2 through a three-centered, two-electron bond [58].
Since there are five carbon atoms, there must be 120 equivalent minima on this

potential. It can be shown that all of these minima can be connected through two
low-lying saddle points. The lower energy one is shown in figure 2(c) and referred to
as the Cs(II) structure. Here the atoms are labeled to show the relationship between
this saddle point and the minimum energy structure. Examination of these two
structures shows that the motion between the Cs(I) and Cs(II) structures corresponds
to a 30� rotation of the Ha �Hb sub-unit. While different levels of theory and different
calculations predict slightly different energies for the Cs(II) saddle point, they all predict
it to be small and range from 30–50 cm�1 above the global minimum [58]. The surface
used here predicts this barrier to be at 29 cm�1 [7].

The second low-lying saddle point is shown on the left in figure 2(c) and is referred
to as the C2v structure. Again, the hydrogen atoms are labeled with the letters a–e.
Comparison of this structure and the one with minimum energy shows that the
motion across the C2v saddle point corresponds to flipping of Hb between Ha and
Hc, and rendering the hydrogen atoms labeled b and c the H2 unit. This barrier has
been calculated to be between 100 and 400 cm�1 [58], and is 341 cm�1 on the potential
used in the present study. When harmonic ZPE is introduced, these two saddle points
become lower in energy than the potential minimum by 26 cm�1 (Cs(II)) and
27 cm�1(C2v).
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Based on the above discussion, it has been anticipated that the ground state of CHþ
5

will be delocalized among all 120 equivalent minima with substantial probability
amplitude at the Cs(II) and C2v structures. While outside the scope of the present
discussion, this localization will be quenched upon deuteration. This was first predicted
by Marx and Parrinello [59] from their path-integral calculations and is seen experi-
mentally in the studies of Lee and co-workers on complexes of CHþ

5 with H2 [8].
More recently, we have demonstrated this by the DMC approaches [60, 61].

Again, ours are not the only DMC studies that have been performed on this species.
Jordan and co-workers reported studies of CHþ

5 at the same time as our original reports
[62]. While they used a somewhat different potential surface, the overall picture
obtained in their and our studies is nearly identical.

3. Ground state wave functions and energies

3.1. Theory

While there are a number of formulations of DMC and a number of ways in which
the simulations may be preformed, the simplest statement of the approach and its
implementation can be found in the original description by Anderson [63, 64].
An excellent review of the approach was given by Suhm and Watts [65]. It includes
many of the important aspects of the method. The basic idea starts with the general
solution to the time-dependent Schrödinger equation,

j�ðtÞi ¼
X
n

cne
�iEnt=�h nj i ð1Þ

where the cn are the expansion coefficients at t¼ 0 and

Ĥ nj i ¼ En nj i: ð2Þ

While the solution to the time-dependent Schrödinger equation is an oscillatory
function of time, and if we replace t with � ¼ it=�h, equation (1) becomes

�ð�Þ ¼
X
n

cne
�En� nj i ð3Þ

and, at long times, the sum will be dominated by the lowest energy eigenstate.
The decay of the amplitude is related to the ZPE of the system. It should be noted
that Kosloff and Tal-Ezer have exploited this relationship to obtain the quantum
mechanical ground state from time-dependent simulations [66]. It should also be
noted that there is nothing related to diffusion or Monte Carlo in the above discussion.

Both the above aspects come into the method employed to solve the imaginary-time,
time-dependent Schrödinger equation. First, we rewrite the time-dependent
Schrödinger equation as a propagator,

�ð� þ��Þ
�� �

¼ e�ðĤ�E0Þ�� �ð�Þ
�� �

ð4Þ
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where, to simplify the discussion that follows, we shift the zero-in energy by the ZPE
of the system of interest. This can be approximated by

�ð� þ��Þ
�� �

� e�ðV̂�E0Þ��e�T̂�� �ð�Þ
�� �

ð5Þ

This is the simplest form of the split-operator of Feit and Fleck [67] which has been
shown to be accurate for small time-steps.

As mentioned above, for DMC simulations one does not employ a traditional
basis-set approach, but instead the goal is to generate a Monte Carlo sampling of
the ground state wave function. As such, the wave function will be represented by an
ensemble of �-functions, or walkers. Next, to keep the simulation as simple as possible,
it will be assumed that the kinetic energy takes the form,

T̂ ¼
Xn
i¼1

�
�h2

2mi

@2

@qi
ð6Þ

where, in most of the cases considered here, the sum is over the n¼ 3N Cartesian
coordinates of the N-atomic system and qi represents one of the Cartesian coordinates
of one of the atoms. In the case of the complexes of neon atoms with SH or OH,
we treat the diatomic molecule as a rigid rod and the coordinates of the hydrogen
and oxygen/sulfur atoms are replaced by the center of mass motion of SH or OH
and three angles that define the orientation of SH or OH with respect to a space-
fixed axis system. Details of this so-called rigid-body DMC approach are not presented
here, but can be found in the work of Buch and co-workers [68]. In this approach,
the Cartesian coordinates are replaced by angles of rotation about a principal
axis system and the masses are replaced by the corresponding moments of inertia.
A procedure for implementing this is given in [69]. The same result can be achieved
by using ‘quaternions’ and such an approach has been described by Benoit and
Clary [70].

Independent of whether the kinetic energy operator is written in terms of Cartesian
coordinates alone or combinations thereof and rotation angles, assuming that the
kinetic energy operator is separable, its action on each of the coordinates can be
considered independently. Further, if we treat our walkers as n-dimensional �-functions,
one finds that the action of the kinetic propagator on a �-function yields a Gaussian
with a width given by

�i ¼

ffiffiffiffiffiffiffi
��

mi

r
: ð7Þ

As such, at each time-step we move each of the n coordinates by an amount that, when
averaged over all the walkers in the ensemble, is consistent with a Gaussian distribution
with a width �i. This provides the ‘diffusion’. The first part of the Monte Carlo aspect
of DMC comes from the fact that the size of each step is taken from a Gaussian-
random distribution. The second part of the propagator involves the potential
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energy. If, at the coordinates of a particular walker, the potential energy is larger
than E0, the walker is in a classically allowed portion of the potential, and
exp½�ðVðxÞ � E0Þ��� > 1. On the other hand, the exponential will be smaller
than one if the walker is in a classically forbidden region of the potential. There
are two ways to handle this term. One is the so-called continuous weighting
scheme in which the importance, or weight, of a given walker is multiplied by
exp½�ðVðxÞ � E0Þ��� at each time-step. This approach suffers from the fact that after
a long propagation time, a small fraction of the walkers can carry most of the total
weight. An alternative is the so-called branching approach in which all the walkers
are required to have equal weights throughout the simulation. In this approach, the
integer value of exp½�ðVðxÞ � E0Þ��� provides the number of walkers at that geometry.
An additional walker is created at that configuration if the fractional part of
exp½�ðVðxÞ � E0Þ��� is larger than a random number, chosen from a uniform
distribution on the range (0,1).

As stated above, this procedure provides a Monte Carlo sampling of the
ground-state wave function, but requires knowledge of E0. Following the early work
of Anderson [63], we approximate E0 by

Wð�Þ ¼ V� �
Nð�Þ �Nð0Þ

Nð0Þ
ð8Þ

Here V is the ensemble average of the potential. This quantity will fluctuate as the
walkers move during the simulation. The second term is introduced to ensure that
the number of walkers remain roughly constant. Here N(�) represents the number
of walkers at imaginary-time, �. If there are more walkers at time � then when � ¼ 0,
this term will have the effect of decreasing W(�) and thereby killing off some of the
walkers. Conversely, if the population has declined, this term will increase W(�) and
lead to more walkers being generated after the next time-step. The value of � is typically
close to 1=��. Operationally, we find it is best to choose � so that the large amplitude
fluctuations in W(�) occur over 10–20 time steps [65].

3.2. Results

As implied by the foregoing discussion, no approximations have been made in
computing the ZPE of a system of interest. Errors are introduced from the statistical
simulations, but by watching the dependencies of the energy on ��, on �, and on the
ensemble size, one can obtain reasonable estimates of the statistical uncertainties.
In this section, we present the results for several systems for which the ZPE can
be computed variationally. We also present comparisons to the results of
MULTIMODE calculations [22] on H5O

�
2 , CHþ

5 , and H3O
�
2 and their deuterated

analogues, which provide variational upper bounds to the ‘true’ ZPE of the system
of interest. More detailed accounts of these studies can be found in the original work.

Before considering the results, it is useful to look at the results that are obtained from
a single DMC simulation. In figure 3, W is plotted as a function of � for a simulation of
CHþ

5 in which all of the walkers are initially placed in the same configuration, obtained
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by multiplying the Cartesian coordinates at equilibrium by 1.1. An ensemble of 20 000
walkers was used for this calculation, �� ¼ 10i in atomic units, and � ¼ 0:01 Hartree.
As can be seen, it takes a small number of time-steps to equilibrate the system, after
which time the fluctuations within this simulation are quite large. On the other hand,
if we average the energy over the final 15 000 time-steps of the simulation and take
the average of the resulting quantities for six simulations, which range from 10 905
to 10 913 cm�1, we obtain an average ZPE of 10 908 cm�1 and a standard deviation
of 2 cm�1. For comparison, large MULTIMODE calculations provide a ZPE of
10 989 cm�1 [61]. This difference may seem large. As mentioned earlier, CHþ

5 is a partic-
ularly challenging system for basis-set approaches, and, as indicated in figure 2,
the ground state is expected to be highly delocalized. When CHþ

5 is partially deuterated,
the ground state wave function becomes localized [59–61] in a smaller fraction of the
120 equivalent minima and connecting saddle points. This is purely a quantum
mechanical effect and reflects the inequivalence of the various binding sites, shown in
figure 2(c). The MULTIMODE and DMC zero-point energies of all six isotoplogues
are compared in table 1. Focusing the energies of CHþ

5 , we note that the smallest
difference between the two calculations of the ZPE is found for CHDþ

4 . Here the
MULTIMODE energy is only 32 cm�1 above the DMC one. For this species, analysis
of the DMC ground state wave function shows that nearly 75% of the probability
amplitude is contained in the minimum in which hydrogen is in position d and in
the saddle points that are directly connected to that minimum [26]. As CHþ

5 is an
extreme case, in terms of the amount of configuration space that is sampled by the
ground state wave function, the level of agreement is quite remarkable.

Comparisons of the zero-point energies for several other four- to seven-atomic
systems are reported in table 1. As seen, for the systems with four atoms, the energies
agree within the stated uncertainty of the DMC simulation. In other cases, the DMC
energies are lower than the MULTIMODE ones, as expected. The differences are
smaller for the smaller systems, which is not surprising given the difficulty of

t (a.u.)

0 50000 100000 150000 200000

W
(t

) 
(c

m
−1

)

10600

10800

11000

11200

11400

Figure 3. Sample plot of the ZPE, plotted as a function of � for the ground state of CHþ
5 . For this

simulation, we used � ¼ 0:01 Hartree, �� ¼ 10i a.u. At �¼ 0, the Cartesian coordinates of all the atoms
are 1.1 times their values at the equilibrium, in a center of mass frame.
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full-dimensional variational calculations on fluxional molecules with six or seven
atoms. The agreement tends to be better for the deuterated species, with differences
that are disproportionately smaller in D3O

�
2 , compared to H3O

�
2 , and for CDþ

5

compared to CHþ
5 . This probably reflects the greater localization of the wave function

upon deuteration. Interestingly, when we consider vibrationally excited states for H3O
�
2

and D3O
�
2 , the trend will be reversed.

The agreement for H5O
þ
2 is poorer than for the other systems. This reflects the fact

that this system has seven atoms, or fifteen vibrational degrees of freedom. As is shown
in figure 2 it also has three first-order saddle points with energies below 500 cm�1.
There are two additional higher-order saddle points with energies between 500 and
1000 cm�1 [50]. The size of the system and the amount of configuration space it can
sample, even in its ground state, put H5O

þ
2 and D5O

þ
2 close to or above the limits

of currently available basis-set based approaches and defines the boundary where
quantum mechanical approaches, like DMC, that do not require a basis set provide
the best alternative, at least at present.

For CHþ
5 [62] and H5O

þ
2 [36, 48, 49], DMC simulations have been performed on

different potential surfaces than were used in our work. Not surprisingly, the zero-
point energies depend on the potential that is employed. The results of these calcula-
tions were included in table 1 to illustrate that the DMC (and other vibrational
calculations) require a potential surface, and no matter how accurate the vibrational
calculations are, the final results and the agreement with experiment will depend
sensitively on the quality of the potential that is used. With developments in electronic
structure codes and in computers, as well as systematic approaches for generating
potentials from electronic energies, significant progress is being made in these
directions. Two such approaches have been applied to the studies of CHþ

5 [57, 62].

Table 1. Comparison of DMC and variational energies.

System EDMC
a Evar Ref.

Ne2OH �112.4 (0.2) �112.2 45, 71
Ne2SH �102.4 (0.1) �102.3 45, 69
H3O

þ 7445 (10) 7451b 72
H2O2 5725 (3) 5726 28, 73
D2O2 4326 (3) 4326 28, 73

H3O
�
2 6605 (5) 6625b 27

D3O
�
2 4877 (5) 4882b 27

CHþ
5
c 11 102 (14) 62

CHþ
5 10 908 (5) 10 989b 26, 61

CH4D
þ 10 298 (5) 10 359b 26, 61

CH3D
þ
2 9690 (5) 9733 61, 74

CH2D
þ
3 9090 (5) 9149 61, 74

CHDþ
4 8559 (5) 8591b 26, 61

CDþ
5 8039 (5) 8083b 26, 61

H5O
þ
2
d 12 222 (1) 12 321 24, 48

H5O
þ
2 12 393 (5) 12 539b 28, 74

aNumbers in parentheses represent the uncertainties in the DMC energies.
bEvar are calculated using MULTIMODE details are provided in the references.
c Based on the surface of Thompson et al.
d Based on the OSS3(p) surface [46].
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4. Obtaining properties from DMC

In addition to providing information about the ZPE, DMC provides a Monte Carlo
sampling of the ground state wave function. While this cannot and should not be
confused with the probability amplitude, which will be needed to obtain expectation
values, it can be useful on its own, for example, for obtaining overlaps with the
functions that can be expressed analytically [75]. On the other hand, many properties
of interest require the ability to average over �j j2, rather than the wave function.
In the discussion that follows, we describe three approaches for achieving this. These
are not the only approaches that have been used. For example, Broude and Gerber
employed a fitting procedure to obtain analytical representations for their wave
functions for HgðH2Þ12 and MgðH2Þ12 clusters [76].

4.1. Averaging by Pair Counting (AVPC)

As one considers ways to obtain �j j2, an obvious solution is to replace each of the
walkers with an n-dimensional Gaussian with a small, but finite width in each
coordinate. This gives a form for the wave function that can be evaluated readily.
While this approach is straightforward on paper, it is not particularly useful since a
single simulation often has on the order of 20 000 walkers and one needs to average
the results over several representations of the wave function. Sandler, Buch, and
Sanlej found that replacing the Gaussian by n-dimensional hyper-sphere and counting
the number of overlapping spheres provides an alternative way to convolute the wave
function [77], but even here, the calculations are expensive. A second issue comes in the
radius of the hyper-sphere. If it is too small, the simulation becomes numerically
unstable, while too large a radius artificially broadens the wave function, introducing
errors. For these above reasons, we have only pursued this approach when others are
not available, for example, for evaluating overlaps of ground state and excited state
wave functions in order to obtain intensities, an application introduced by Severson
and Buch in their studies of water heximer [35].

4.2. Adiabatic DMC

An approach that we developed to circumvent the challenges of obtaining a representa-
tion of �j j2 is called adiabatic diffusion Monte Carlo, or ADMC. This method is based
on the finite field approach that has been applied in a variety of contexts where wave
functions are not readily available. It was first applied to DMC by Sandler et al. [78].
The basic idea is relatively simple [69, 79]. As was mentioned above, DMC provides an
accurate method for finding the ground state energy of an arbitrary system. One can
imagine taking the Hamiltonian for the system of interest and perturbing it by
adding a term that is proportional to the observable that one wants an expectation
value of, Ŵ

Ĥ ¼ Ĥð0Þ þ �Ŵ ð9Þ
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For this purpose, Ŵ may be any operator and can be differential or multiplicative.
The only constraint is that the kinetic energy operator remains separable so that the
DMC methods, presented in the previous section, may be applied.

Based on the results of perturbation theory, we find that if the Hamiltonian has
a perturbation that is proportional to �, then the energy can be expressed as an
expansion in �,

E0 ¼ E
ð0Þ
0 þ �E ð1Þ

0 þ
�2

2
E

ð2Þ
0 þ � � � ð10Þ

The term that is proportional to �,

E
ð1Þ
0 ¼ �

ð0Þ
0 jWj�

ð0Þ
0

D E
ð11Þ

is exactly the quantity of interest.
Within DMC, the procedure for solving this problem is a bit different than

traditional perturbation theory. As is shown in figure 3, DMC provides the ZPE of
the system as a function of �: If we replace the Hamiltonian for the system, with the
Hamiltonian in equation (9), and make � a linear function of �, W(�) will no longer
fluctuate around the ZPE, but instead will fluctuate about a low-order polynomial
in � or equivalently �. This is illustrated in figure 4 for a simulation of H3O

�
2 in

which Ŵ is the OO distance, ROO. For this simulation, d�=d� is chosen so that the
change in the ZPE due to the perturbation is small compared to the statistical fluctua-
tions of the simulation. In this sense, the perturbation is introduced adiabatically.

The advantage of this approach is that it provides a method by which the determina-
tion of the averages has the same accuracy as the DMC energy simulations. The
disadvantage is that separate simulations must be run for each property of interest.

H = H (0) + λROO

Intercept = 6605 cm−1

Slope = 2.4988 Å

λ (Å−1 cm−1)

−100 −50 0 50 100

W
(λ

) 
 (

cm
−1

)

6200

6400

6600

6800

7000

7200

Figure 4. Sample plot of the results of an ADMC simulation of hROOi for H3O
�
2 .
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In the more recent studies, we have abandoned this approach in favor of the descendent
weighting (DW) method, described next.

4.3. Descendent weighting

A third option, and one that we have adopted for most of the work presented here,
is the approach of DW [65]. This is also closely related to the idea of forward/
backward counting of Rothstein [80]. The philosophy is based on the fact that
calculating �j j2 at a particular configuration requires the evaluation of the wave
function at that point by two different methods. As mentioned before, the distribu-
tion of the positions of the walkers at time � provides a Monte Carlo sampling of
the wave function at that time. Evaluating �j j2 requires a method to evaluate the
magnitude of the wave function at the position of each of the walkers. One way to
determine this is to count the number of descendants a particular walker has after
a specified number of time-steps. It is easy to see why this procedure should provide
the desired information. If the walker is in a classically allowed region of the poten-
tial, for example, near the potential minimum, the walker will span numerous progeny
and these new walkers will, in turn, generate additional walkers. This leads to a rela-
tively large weight associated with this walker. On the other hand, a walker that is in
a classically forbidden region has less probability for spawning progeny and there is a
reasonable probability that it will be removed from the simulation. As with a contin-
uous weighting scheme, care must be taken with the number of time-steps over
which the descendants are counted. If the time is too little then all the walkers will
have equal probability. If too long a time is used then most of the original walkers
will have been annihilated.

The DW approach has the additional advantage over the ADMC approach that one
can use the resulting �j j2 to obtain projections of the probability amplitude onto any
single internal coordinate, or, for that matter any subset of internal coordinates. This
can be useful if one is interested in obtaining the probability amplitude associated
with a vibrational motion in these molecular clusters or ions. A comparison of results
of the DW and AVPC approaches can be found in table 1 of reference [77].

4.4. Example 1 – Bond lengths in H3O
2
2

To illustrate the aforesaid three approaches, we have computed the average values of
the OO and OH distances for H3O

�
2 by the AVPC and DW approaches, described

previously. Comparing the values in table 2 to the slope in figure 4 we find that the
agreement among the three approaches is quite good. As, of the three, the DW
approach is the most efficient; it is the one that we have used in most of our recent
applications of DMC.

4.5. Example 2 – Bond length distributions for CH1
5 and CD1

5

As noted already, CHþ
5 presents a particularly interesting case study for DMC due to

the equivalence of the five hydrogen atoms. This leads to a lack of a single reference
structure for basis-set approaches. The reason for this is illustrated in figure 5.
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Here, we plot the probability amplitude for the ground state of CHþ
5 , projected onto the

two coordinates that correspond to motion from the Cs(I) global minimum toward the
two saddle-point structures, plotted in figure 2(c). In figure 5(a), we project j�j2 onto �,
the coordinate that corresponds to rotation of the CHþ

3 subunit off the plane contains
the carbon atom and the hydrogen atoms that are labeled a and b in figure 2(c). For
these plots, � ¼ 0, �60, and �120 correspond to the minimum energy configurations,
whereas � ¼ �30, �90, or �150 correspond to the Cs(II) saddle-point geometries. As is
seen, the probability amplitude is roughly equal at all values of �, and, if anything, is

Rab-Rbc (Å)

RCH/D (Å) RHH/DD (Å)

−1.0 −0.5 0.0 0.5 1.0

R
el

at
iv

e 
pr

ob
ab

ili
ty

R
el

at
iv

e 
pr

ob
ab

ili
ty

0.00

0.01

0.02

0.03

0.04

0.05(a) (b)

(c) (d)

H
D

f (deg)

−180 −120 −60 0 60 120 180
0.000

0.005

0.010

0.015

0.020

0.025

0.8 1.0 1.2 1.4 1.6 1.8

R
el

at
iv

e 
pr

ob
ab

ili
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.0 1.5 2.0 2.5

R
el

at
iv

e 
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

Figure 5. The probability distributions for the ground state of CHþ
5 (solid line) and CDþ

5 (dotted line),
plotted as a function of the two isomerization coordinates, the CH and HH distances. In (a) and (b) vertical
solid lines represent the values of the coordinate at the equilibrium configurations, dashed lines give the value
of the coordinate at the corresponding first-order saddle point.

Table 2. Averages of various distances in H3O
�
2 , evaluated

by DW and AVPC.

Quantity DW AVPC

ROO 2.497 Å 2.501 Å
rOH

a 0.981 0.980

rOH
b 1.267 1.263

aOuter OH distance.
b Inner OH distance.
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somewhat larger at the saddle-point than at the minimum. Similar behavior is seen in
classical trajectories for this system [57]. We believe this behavior reflects the fact that,
when ZPE is taken into account, the lower energy configuration is, in fact, the Cs(II)
saddle-point structure. This is supported by the fact that on an earlier version of the
potential used in the present work, evaluated at the same geometries but using MP2
level calculations to generate the electronic energies [56, 57], we found that when tritium
was substituted for hydrogen, the probability amplitude at the Cs(I) minimum increased
relative to that at the Cs(II) saddle-point. Independent of small fluctuations, we find
that there is nearly equal amplitude as the CHþ

3 unit is rotated.
The second low-energy saddle point corresponds to a flipping motion of Hb between

Ha and Hc. We can characterize this motion by plotting the probability amplitude as
a function of the difference between the Ha �Hb distance and the Hb �Hc distance.
This is plotted in figure 5(b). As is seen, the amplitude is larger near the Cs(I) minimum
energy configuration, depicted by vertical solid lines, although the maxima occur
at slightly shorter distances. In addition, there is significant probability amplitude
when the two HH distances are equal, e.g. near the C2v saddle-point. Deuteration
will spread out the distribution and decrease the amplitude at the C2v saddle-point
structure, but the amplitude still remains significant. These results serve to illustrate
that the wave function is completely delocalized over both of the low-lying barriers
for isomerization, even in the ground vibrational state. When we plot the probability
distributions as functions of the HH or CH distances for each possible combination
of H atoms they are found to be identical, as seen in panels (c) and (d) of figure 5.
This is in spite of the fact that the initial conditions for the simulation are based on
a single minimum energy geometry. This further serves to illustrate that the DMC
simulation does allow the walkers to sample all energetically accessible minima when
there is probability amplitude in the tunneling region. In cases where the barriers are
high and the amplitude at the tunneling region is nearly zero, such an exchange will
not take place. Examples of this include the exchange of the central and outer hydrogen
atoms in H3O

�
2 or H5O

þ
2 .

4.6. Example 3 – Rotational constants

Important properties, as we consider interpreting spectra, are the rotational
constants. These quantities are tricky as they are not cleanly associated with specific
operators. Instead, they result from applying second-order perturbation theory to the
full rotation-vibration Hamiltonian, and, experimentally, arise from fitting a series of
ro-vibrational transitions to a model Hamiltonian. As such, one way to obtain these
quantities would involve evaluating rotationally excited states by DMC – something
that has been pursued by Whaley et al. [81, 82].

An alternative is to construct an approximate operator for the rotational constants.
Since the rotational constants are proportional to the elements of the inverse of the
moment of inertial tensor, one way to evaluate them by DMC is to average the six
unique elements of this matrix over the probability amplitude, obtained by DMC.
In the case of relatively rigid complexes, a geometrical embedding can be employed.
This is the approach we took for our studies on NenSH and NenOH. In these systems,
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the z-axis is chosen to be the vector that connects the centers of mass of O/SH to the
center of mass of the neon atoms, while the neon complex is chosen to be symmetric
with respect to reflection in the yz-plane, when the complex is in its minimum energy
configuration. Here the rotational constants are represented by the average values of
the diagonal elements of the inverse of the moment of inertia tensor. The results for
NenOH (n¼ 2–4) are given in table 3 .

A second possible choice is to employ an Eckart embedding of the body-fixed
axis system [83]. We are not the only group to take this approach. Buch and co-workers
used an Eckart embedding in their studies on CO–H2O [77] while Jordan and
co-workers used it for their studies of CHþ

5 [62]. For this approach, we follow the
work of Louck and Galbraith [84]. The first step is to define a static molecular
model, which is typically a stationary point on the potential. For this static molecular
model, the positions of the N atoms are described in Cartesian coordinates, and the
origin is at the center of the mass. The position of the ith atom is represented by aðiÞ.
At any arbitrary configuration, the coordinates of each of the atoms are given by rðiÞ

and the Eckart vectors are given by

F� ¼
Xn
i¼1

mðiÞaðiÞ� r
ðiÞ ð12Þ

where � represents one of the Cartesian coordinates and mðiÞ is the mass of the ith
atom. Recalling that in the Eckart frame, the goal is to minimize the so-called
vibrational angular momentum, the three unit vectors that define the Eckart frame are
given by

f̂x, f̂y, f̂z

h i
¼ Fx, Fy, Fz

� �
F�1=2 ð13Þ

Table 3. Rotational constants for NenOH.

n Calculation A/MHza B/MHz C/MHz

2 Equilibriumb 6022.5 5672.7 2921.2
Eckartc 5183 (45) 5114 (53) 2436 (19)
Geometricd 5159 (33) 4981 (31) 2459 (33)
Eckarte 5322 (63) 5140 (39) 2458 (17)

3 Equilibrium 2902.4 2783.8 2783.8
Eckart 2403 (11) 2375 (25) 2360 (17)
Geometric 2454 (23) 2398 (29) 2392 (26)

4 Equilibrium 2797.5 1492.1 1492.1
Eckart 1916 (23) 1657 (43) 1055 (27)

aOne standard deviation based on 5 ADMC calculations.
bValue of the constants evaluated at that stationary point.
c Value of the vibrationally averaged constants using an Eckart embedding.
dValue of the vibrationally averaged constants using a geometric embedding.
eNe2OD.
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In this approach, for each of the walkers, the inverse of the moment of inertial tensor
is evaluated in the Eckart frame and the matrix elements are averaged over the
ensemble (or evaluated by ADMC, in the case of NenOH). Comparison between
the above two approaches for NenOH is given in table 3. In most of the cases, the
average rotational constants are much smaller than the corresponding values at the
stationary points that are within 10 cm�1 of the global minimum. On the other hand,
both the approaches yield rotational constants that agree within twice the standard
deviations of the calculations. Where there are differences, these can easily be
rationalized [71].

While the NenOH systems are relatively floppy, the facts that the rotational
constants are determined by the masses of the heavy atoms, and the positions of
the heavy atoms remain close to their minimum energy configuration in the
ground vibrational state make the evaluation of the rotational constants relatively
insensitive to the choice of embedding. This will not be the case for molecules
like CHþ

5 for which the carbon atom is near the center of mass of the ion and
the rotational constants are affected by the large amplitude motions of the
hydrogen atoms. In fact, attempts to use a geometrical embedding for this system
will yield unphysical results. Instead, we employ an Eckart embedding, based on
each of the three low-energy stationary points on the potential surface, shown in
figure 2(c). At first glance, it is not clear that an Eckart embedding should be
appropriate for this system. In table 4, we report the rotational constants at the
three stationary points as well as those obtained by an Eckart embedding that
employs each of them for its static molecular model. As is seen, the differences
among the static rotational constants are large, but the vibrationally averaged
ones agree to within the statistical uncertainties. Further, the three
rotational constants are nearly equal. For comparison, Jordan and co-workers
report vibrationally averaged rotational constants of 3.83, 3.80, and 3.78 cm�1

using their potential surface and we predicted an average value of 3.91 cm�1 from
the fit MP2 surface of Brown et al. [57]. The DMC rotational constants, reported
above, have been used by Savage and Nesbitt to assign a band origin at
2950 cm�1 in their rotationally resolved spectrum for CHþ

5 [19].
For H5O

þ
2 and H3O

�
2 , the difference between the masses of the hydrogen and oxygen

atoms makes them very close to symmetric top molecules. For example, the

Table 4. Rotational constants for CHþ
5 .

Reference Calculation A/cm�1 a B/cm�1 C/cm�1

CsðIÞ Equilibriumb 4.441 3.842 3.644
Eckartc 3.906 (0.017) 3.860 (0.025) 3.836 (0.025)

C2v Equilibrium 4.376 3.961 3.779
Eckart 3.910 (0.019) 3.855 (0.026) 3.838 (0.020)

CsðIIÞ Equilibrium 4.443 3.822 3.645
Eckart 3.903 (0.025) 3.862 (0.032) 3.838 (0.021)

aOne standard deviation based on 16 calculations of the probability amplitude.
bValue of the constants evaluated at that stationary point.
c Value of the vibrationally averaged constants using an Eckart embedding.
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vibrationally averaged rotational constants for H3O
�
2 are 10.2497, 0.308, and

0.305 cm�1, while for D3O
�
2 , they are 5.5028, 0.282, and 0.279 cm�1 and the correspond-

ing � values are �0:9994 and �0:9989 [85]. This contrasts the values at the linear saddle-
point, the lowest energy stationary point shown in figure 2(a) when ZPE is taken into
account, of 10.2651, 0.3213, and 0.3196 cm�1 for H3O

�
2 and 5.5067, 0.2933, and

0.2908 cm�1 for D3O
�
2 . The similarity of the B and C constants for this system is not

surprising as most of the mass is on the two oxygen atoms and it is their distance
that, to the lowest order, determines these constants. The large increase, 5% for
H3O

�
2 and 10% for D3O

�
2 reflects the relatively larger amplitude excursions the three

hydrogen atoms off the OO bond axis.
We have also evaluated the vibrationally averaged rotational constants for H5O

þ
2 .

As with H3O
�
2 , H5O

þ
2 is nearly a symmetric top, the constants, evaluated at the

potential minimum are 5.8520, 0.2915 and 0.2903 cm�1 for H5O
þ
2 and 2.9828, 0.2405,

and 0.2387 cm�1 for D5O
þ
2 . When zero-point motions are considered, the vibrationally

averaged constants are 5.776, 0.2804, and 0.2803 cm�1 for H5O
þ
2 and 2.9545, 0.2318,

and 0.2316 for D5O
þ
2 , and corresponding � values are �0:99996, and �0:99985,

when the equilibrium geometry is used for the static molecular model. Using the Cs

or C2h, trans, saddle point configurations gives constants that differ by less than
0.04%. On the other hand, if the C2v, cis, saddle-point is used for the static molecular
structure, the averaged constants are very different, reflecting the fact that there is very
little amplitude near this configuration.

5. Excited states

One of the long-standing challenges with the DMC approach arises from the fact that it
is fundamentally a ground state method. In order for it to be a useful tool for investi-
gating systems of chemical interest, one needs to have a way to handle states that
contain nodes. For electronic structure problems, nodes must be considered even
about the ground state. For vibrational problems, in order to obtain information for
states besides the ground state, nodes must be included in the calculation. A number
of methods for evaluating vibrationally excited states have been considered. Coker
and Watts introduced a method based on the orthogonalization of wave functions
[87]. Ceperley and Bernu have developed a correlation function based approach for
obtaining the energies of excited states [87]. This approach was applied to the H5O

þ
2

system by Cho and Singer [48], using their OSS3(p) potential surface [46]. Whaley
and co-workers have used a related approach, termed POITSE [81], to evaluate
rotational excited states of molecules in helium droplets. In what follows, the focus is
on an alternative approach, based on the fixed-node approximation [64].

Specifically, in a case where the functional form of an n� 1-dimensional nodal
surface is known, for example by symmetry, evaluation of an excited state wave func-
tion and energy is straightforward. Mathematically, in the region of a node a wave
function behaves in exactly the same manner as it would if the potential had been
made infinite along the nodal surface. Specifically, the wave function goes to zero
at the node, while the first derivative is finite. This can most easily be seen in one dimen-
sion. For example, consider the Morse oscillator potential, shown in figure 6(b).
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The energy of the state with n¼ 1 is the same as the energies of the ground states of the
potentials, plotted in panels (a) and (c). In addition, the corresponding wave function,
plotted in (b) is the sum of the wave functions plotted in the other two panels.

As the plots in figure 6 show, when we know where the node(s) should be placed,
excited state calculations can be reduced to a series of ground state calculations in
which infinite potentials are introduced at the nodes, effectively dividing the surface
into a series of regions over which the wave function does not change sign. Such
a series of ground state calculations can be evaluated readily by using DMC. Nearly
30 years ago, Anderson provided a simple algorithm for calculating excited state
wave functions within this fixed node approach. As wave functions cannot penetrate
infinite potential barriers, any walker that crosses the nodal surface must be removed
from the simulation. In the limit of infinitely short time-steps, this condition is sufficient
to ensure that the excited states are properly described. For finite time-steps, the
possibility that a walker crosses the nodal surface twice, starting and ending on the
same side of the node, must be accounted for. This is accomplished by introducing
a recrossing correction that introduces the probability that a walker that remains on
the same side of the nodal surface before and after a time-step has actually crossed
the node twice [64].

The above procedure is arguably the most effective approach for introducing nodes
into DMC simulations, but it requires a priori knowledge of the functional form of the
nodal surface. This is perhaps the greatest obstacle for applying DMC to electronic
structure problems. For vibrational systems, the problems are more or less severe,
depending on one’s perspective. The challenges in vibrational problems come from
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Figure 6. Plots of three potentials and their corresponding wave functions, all of which have the same
energies. The central plot shows a Morse oscillator with parameters to model an OH stretch, along with
the wave function for the first vibrationally excited state. On the left and right, the potential is replaced by an
infinite potential at the value of R at which the wave function in (b) has a node. The resulting ground state
wave functions are superimposed on the potentials, plotted in (a) and (c).
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the larger density of states. As a result, multiple vibrational states are typically of
interest, whereas there are many interesting systems where the chemistry takes place
on a single electronic state. On the other hand, in contrast to electronic structure
problems, the ground vibrational state is nodeless. Drawing on the expectation that,
to lowest order, the vibrations in a N-atomic system can be described as 3N�6
uncoupled oscillators (which may or may not be harmonic), one expects that the
nodal surfaces can be approximated by a function of a single vibrational coordinate.
In other words, the wave function that corresponds to a state with one quantum
of excitation in mode j will change sign when qj ¼ �j. This treatment is the basis of
a normal mode picture of molecular vibrations, which can easily be shown to be
valid in the limit of small amplitude displacements from a single minimum energy
structure. For these floppy systems, such a treatment is clearly oversimplified, and
has led some people to conclude that the fixed-node approach will be futile for systems
as floppy as H5O

þ
2 [48], but, as can be seen, at the level of the fundamentals, careful

choice of these vibrational coordinates can lead to a good approximation to most,
if not all, of the states with one quantum of excitation.

While the above lays the groundwork for obtaining excited states, a significant issue
remains. That is, determining the value of �j at which the wave function is expected to
change sign. In some cases symmetry considerations may be used to define the position
of the nodal surface. In many cases, this is not possible. One alternative is to follow
an approach commonly taken in electronic structure calculations and use nodes from
wave function that are obtained by an approximate approach. This possibility was
explored by Gerber and co-workers, where they used the excited state wave functions,
obtained from vibrational self-consistent field (VSCF) calculations to obtain excited
state energies for Ar3 and Ar13 [88].

Before addressing how we determine the value of �j in these cases, it is useful
to consider the various relationships among the properties of the three wave functions
plotted in figure 6. These ideas were originally described by Buch and co-workers [78].
First, the energies associated with the three wave functions are identical. In
addition, the first derivative of the wave functions plotted in (a) and (c) are the same
at the point they go to zero. If the position of the node were moved to the right, the
energy of the state that is localized on the left side of the node would decrease,
while the one on the right side would increase due to quantum mechanical effects of
confinement.

Severson and Buch used the above considerations to find the energies of the
fundamentals of ðH2OÞ6. In that study, they used trial-and-error to locate the optimal
positions of the nodal surfaces [35]. The challenge of that approach comes from the
fact that the energies evaluated by DMC contain statistical uncertainties. Therefore,
matching energies of individual simulations is numerically challenging. To address
this, we have applied the above considerations to determine the optimal value of �j,
within the context of an ADMC simulation [69, 79]. As in the evaluations of expecta-
tion values by ADMC, we slowly vary the Hamiltonian that is being solved during the
simulation. In this case, the parameter that is being varied is the position of the nodal
surface for a fixed-node calculation. In this approach, two simulations must be run,
one for each of the two parts of the wave function, shown in figure 6(a) and (c).
The resulting energies are plotted as functions of the position of the nodal surface,
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and the point at which these two curves cross provides the position of the node and the
corresponding energy. Due to the numerical noise associated with DMC simulations,
we find that this is most easily accomplished by fitting the plots of W(�) to a low-
order polynomial expansion in �, prior to finding the crossing point. The results of a
typical simulation are shown in figure 7, where we calculated the energy of the
fundamental in the OO stretch in H3O

�
2 .

5.1. Example 4 – The stretch fundamental in Ar3

As an initial test of this approach, we repeated the fixed-node calculations of Broude
and Gerber on the argon trimer system. In this system, the three vibrational modes
are divided into a doubly degenerate bend and a symmetric stretch. As such, the
node for the bend-fundamental can be determined by symmetry, whereas an approach
for locating the node is needed to obtain the fundamental in the symmetric stretch.
Our ADMC calculation predicts this energy to be at 74.66 cm�1, while the fixed-node
calculations for this system, in which the nodes were determined by the VSCF
wave function gives an energy of 76.76 cm�1 [88]. Converged variational calculations
of Cooper, Jain, and Hutson using the same potential predict an energy of
74.37 cm�1 [89]. The fact that the ADMC energy is closer to the variational result
than the DQMC/VSCF is not entirely surprising as VSCF is a variational procedure
that will yield the separable wave function optimized to minimize the energy. It has
been shown that alternative procedures, for example, a natural modal analysis that
optimizes the overlap, between a separable wave function and the true ground state
wave function, will yield different solutions [90]. What is somewhat more surprising
is the level of agreement between the fixed-node ADMC energy and the variationally
optimized energy for the same system. For weakly bound systems, one might expect
that, even at the fundamentals, the wave function is highly anharmonic and not
separable. We will return to this point in our discussion of the second set of systems.
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Figure 7. Plots of the energy as a function of the position of the nodal surface. In this case, the node
is chosen to be along the OO stretch in H3O

�
2 . As is seen, the two curves form a cross, and fitting them

to low-order polynomials allows us to identify the energy of the first excited state as well as the position
of the node.
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5.2. Example 5 – The fundamentals in Ne2XH

To further test the ADMC approach, we calculated the six fundamentals of Ne2OH
and Ne2SH. The results are reported in table 5. As in Ar3, these clusters are anticipated
to undergo large amplitude motions, even in their ground vibrational states. This is
illustrated in the projections of the probability amplitudes onto the two Ne–OH stretch
and bend coordinates, shown in figure 8(a) and (b). The amplitude is particulary large
in the in-plane bend coordinate which corresponds roughly to OH rotation in the plane
of the complex. The analogous plots for Ne2SH look nearly identical although the
amplitude of the motion is larger for the OH complex than for the SH one. This reflects
the fact that the Ne–SH potential is more isotropic than the one for Ne–OH [43, 44]. In
fact, examination of the Ne–OH potential shows that it more closely resembles that of a
bound triatomic molecule than a typical van der Waals system. This leads to greater
localization of the OH in a near-linear Ne–OH configuration in the dimer, but when
a second neon atom is introduced, this also leads to a larger amplitude in-plane OH
motion, compared to the Ne2SH complex.

Examination of table 5 shows that, in general, the ADMC energies of the fundamen-
tals are in very good agreement with those obtained by converged variational calcula-
tions. Exceptions are found for the in-plane bend for Ne2OH and for the Ne–XH
symmetric stretch in both complexes. We shall return to these later. For the remaining
states, the differences are in the order of 0.5–1.0 cm�1. This agreement is excellent
given the fact that the nodal surfaces are assumed to be functions of a single internal
coordinate, or symmetry adapted linear combinations of internal coordinates
that reflect the fact that these complexes have C2v symmetry in their equilibrium
configurations.

The agreement may, at first, be surprising given that these are rather floppy systems.
We believe, it reflects the fact that while the simplicity of the functional form of the
nodal surface could provide a strong constraint on the description of the system,
we have optimized the wave function within this constraint. Specifically, there are
not any constraints on the extent of the motion in the other degrees of freedom, and,
for example, if we look at the fundamental in the Ne2–OH stretch, we find that as
the Ne2–OH distance is increased, the amplitude of the OH bending motion also

Table 5. Comparison of DMC and var energies for low-lying vibrational states in the
T-shaped minimum of the Ne2XH potential.

Ne2SH Ne2OH

State DMCa var DMC var

Ground state �102.4 �102.3 �112.4 �112.2
Ne–XH–Ne bend 17.1 17.3 18.2 17.8
Ne2 bend 19.2 19.3 22.1 20.8
Ne2�HX stretch 23.3 25.4 33.5 28.4
In-plane bend 33.4 32.9 b b

Out-of-plane bend 40.8 40.8 77.6 78.5

aAll energies are reported in cm�1. The ground state energy is reported relative to the NeþNeþXH
dissociation limit while all other energies are reported relative to the ground state energy.
b The in-plane bend fundamental does not exist in Ne2OH.
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increases, compared to that seen in the ground state. Conversely, as the Ne2–OH
distance decreases, the amplitude of the bending motion is decreased [71]. In addition,
we know that in the limit of very small amplitude motions, the vibrational wave func-
tion is separable. In these more fluxional systems, one expects that anharmonicity will
become more important, but in the absence of near resonances, there is no reason to
expect that the nodal surfaces that are needed to obtain the fundamentals will be
complicated functions of the internal coordinates, assuming that these coordinates
are picked carefully.

A notable exception to this good agreement is seen in the Ne–XH symmetric stretch
in both Ne2SH and Ne2OH. The reason for this can be understood by an examination
of the projections of the wave function, obtained by the variational calculations for this
state in Ne2OH and plotted in figure 8(c) and (d). For this state, the node has distinct
curvature in the r1=r2 plane, while the DMC simulations assumed that the node can be
described by r1 þ r2 ¼ �. This was not considered in the DMC simulations which were
performed several years prior to the variational calculations [45, 69, 71]. More
recent work on H3O

�
2 and HOOH has allowed us to investigate ways to handle this

curvature and to identify when it is a concern. A more complete discussion of these
issues can be found elsewhere [27].

In the case of the in-plane bend fundamental in Ne2OH, the relatively large
amplitude motion of the in-plane bend, even in the ground state and the relatively
low energy conformer with a linear Ne�OH�Ne geometry made the lowest energy
state with a node in this coordinate correspond to the ground state of the
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Figure 8. Projections of the wave functions for Ne2ðOHÞ along the two Ne–OH distances, r1 and r2 and
slices through the wave function in the two Ne–OH angles. These wave functions were obtained from the
variational calculations, described in [45]. Plots for the ground state are shown in (a) and (b), while (c) and (d)
give results for the fundamental in the Ne–OH symmetric stretch.
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Ne�OH�Ne conformer. In fact, this simulation yields an energy of 34.56 cm�1, which is
in good agreement with the energy of the lowest energy state in the linear Ne�OH�Ne
minimum with the same symmetry, 34.51 cm�1.

5.3. Example 6 – Fundamental vibrations in H3O
2
2 and D3O

2
2

A third set of systems for which we have made comparisons with variational results for
all of the fundamentals is H3O

�
2 and D3O

�
2 . In contrast to the two systems, described

above, the fact that these ions contain five atoms means that they are beyond the size of
species for which variational calculations can be performed and converged to better
than 0.1 cm�1 accuracies that were reported for Ar3 and Ne2XH. As such, for these
systems we draw from our experience with the rare gas complexes as well as trial studies
on closely related systems, HOOH and H3O

þ, for which comparisons to converged
and fully converged calculations can be made. Based on that work, we expect that
the excited state energies, obtained from the DMC simulations should, for the most
part, provide semi-quantitative descriptions of these states.

In table 6 we report the energies for H3O
�
2 , obtained by ADMC and using

MULTIMODE [27]. Details of both the calculations can be found elsewhere.
The important point is that the two sets of calculations are in overall good agreement.
For states with energies below 600 cm�1, the differences for H3O

�
2 are less than 15 cm�1,

and the splitting between the þ and � states are also in good agreement. For this
system, the difference between the þ and � states is the introduction of nodes at the

Table 6. Energies of the fundamentals of H3O
�
2 and D3O

�
2 obtained from DMC and VCIa calculations.

H3O
�
2 D3O

�
2

VCI DMCb VCI DMC

Mode þ
c

� þ � þ � þ �

Groundd 6625 22 6605 14 4882 6 4877 4
Torsion 132 215 131 224 108 143 103 145
OO stretch 515 540 505 521 493 509 491 495
Wag 576 606 588 602 398 406 437 437
Rock 465 528 479 517 319 349 354 368
z 741 785 644 665 484 512 402 408
x 1299 1426 1102 1110 982 1020 792 797
y 1473e 1518 f 1019 1094 1100 f 713
OH-symg 3641 3666 3631 3641 2681 2689 2678 2682
OH-asymg 3634 3666 3609 3625 2681 2699 2664 2667
OH-local 3610 3632 2668 2673

aThe details of the VCI calculations are given in [27].
b All DMC results contain a 5 cm�1 statistical uncertainty.
c The + and � states represent the lower and upper states of the tunneling doublets.
d The ground state energy is reported relative to the potential minimum. All other energies are reported relative to the
ground state.
e Several states between 1320 and 1618 cm�1 contain significant character of this fundamental.
f This state could not be identified from the fixed-node DMC calculations.
g For these states there is at least one other state with significant OH or OD stretch character within 10 cm�1 (OH) or 3 cm�1

(OD) of the reported energy.
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cis- and trans-configurations of the HOOH group for the � state, while it is nodeless in
the þ state.

As noted above, for D3O
�
2 , the DMC and MULTIMODE ZPEs differ by only

5 cm�1, which is roughly the statistical uncertainty of the DMC simulation. On the
other hand, the difference in the frequencies of the four lowest frequency modes are
larger for D3O

�
2 than for H3O

�
2 . One likely reason for this is that deuteration will

make D3O
�
2 more normal mode-like. This will help to make the MULTIMODE

calculations, that are based on a normal mode basis, more accurate, while it will also
mean that the nodes are less well described by functions of symmetry adapted linear
combinations of the internal coordinates. The latter factor will render the ADMC
results somewhat less accurate.

The next three states in the list correspond to Cartesian displacements of the central
hydrogen atom. For these states, the fundamentals in the z-displacements of the central
hydrogen atom are in fairly good agreement, but given the large amplitude of this
motion, it is a challenge for both the approaches. The perpendicular displacements
are more challenging. Here, the difficulty reflects the fact that there is a significant
coupling between these modes and the wag and rock mode of the outer hydrogen
atom. More recent calculations show that placement of the nodes along the coordinates
that are linear combinations of these four modes yields, energies that are closer to those
obtained from the MULTIMODE calculations.

The last two states are the stretches of the outer hydrogen atoms. If we take a normal
mode approach, we find that these two states are slit by roughly 20 cm�1 in H3O

�
2 and

by 14 cm�1 in D3O
�
2 . If, on the other hand, we localize the excitation, we find that the

energy is very close to the asymmetric stretch energy, in all the cases. Based on what we
found for the Ne2XH systems, we believe that the localized OH stretch provides a more
faithful representation of the nodal surface in these cases.

6. Using DMC to interpret spectra

One of the exciting and interesting aspects of the systems that we have used to illustrate
DMC approaches comes in the fact that all of them are of experimental interest.
For nearly all of these systems, spectra have been reported, but not fully assigned.
The reason we initially began investigating DMC was to provide inputs that might
aid in the assignment of the electronic spectrum of Ne2OH that had been measured
by Miller and co-workers [91]. While having the ability to evaluate probability
amplitudes, vibrationally averaged rotational constants and approximations to the
anharmonic vibrational frequencies, through the fixed node approximation are all
useful, to make full comparisons, one needs to be able to evaluate the intensity
as well as the position of the transitions.

For H3O
�
2 and H5O

þ
2 , we have employed the AVPC approach [78]. In contrast to the

systems investigated with this approach by Buch and co-workers, both H3O
�
2 and

H5O
þ
2 are essentially symmetric tops, having � < �0:999. This leads to difficulties in

embedding the body-fixed axis system for these species. In spite of this, we have
computed the intensities for a variety of transitions of these complexes and find
that they are in good agreement with those obtained from MULTIMODE [74].
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As mentioned above, this approach can be tedious and it seems that, at least for the
interpretation of low to moderate resolution spectra, one should be able to find an
easier way to achieve this. Work in this direction is currently underway.

In the case of CHþ
5 , we have taken a somewhat different approach for obtaining

information about the spectra in the CH stretch and HCH bend regions of the spectrum
for which a laser induced reaction (LIR) spectrum has recently been reported [9].
Although somewhat surprising at first, in many cases the scaled harmonic calculations
provide very good approximations to both the positions and intensities of the lines
associated with intramolecular vibrations in hydrogen bonded clusters. Given that
CHþ

5 samples multiple minima and the connecting saddle points even at the zero-
point level, such a simple approach is not advisable here. On the other hand,
we have had good success calculating the spectra of CHþ

5 using either variational
(e.g. MULTIMODE) or harmonic calculations that are based on a single reference
geometry and weighting them by the probability amplitudes at those geometries,
obtained from DMC calculations. While this approach cannot provide an accurate
high resolution spectrum, it reproduces the major features in the CH stretch region
down to a 10 cm�1 resolution [19].

7. Summary and future prospects

In this review, we have summarized some recent advances in DMC as it is applied to
molecular clusters and molecular ions. While significant progress has been made over
the past decade and through this interesting insights have been gained into the spectros-
copy and dynamics of the NenXH, H3O

�
2 , H5O

þ
2 and CHþ

5 systems, issues remain to be
addressed. Among these are: Can there be better ways to obtain intensities from the
DMC simulations? Are there better or more systematic ways to select the coordinates
for fixed-node calculations? What does one do when the system of interest cannot be
described by a single adiabatic potential surface? Are there more efficient and more
accurate ways that we can obtain excited states? Probably most important, the calcula-
tions described here all relied on having available a potential surface for the system
of interest that could be evaluated at any energetically accessible configuration of the
system. There are many systems of interest for which such potentials do not exist
and can we find a way to work around these issues?

All of the above questions are being addressed either by us or by others. We are
presently working to extend our approaches for spectral simulations for these systems.
As rotationally resolved spectra become available [92], we also need to consider
approaches for obtaining rotational information. Such work has been done for
rotations of molecules within helium nano-droplets [81], but, in contrast to the systems
considered here, these systems typically have a well-defined structure and are not as
prone to the large Coriolis interactions as are seen in CHþ

5 .
For non-adiabatic systems, we have been working on surface hopping approaches

within DMC. An early account of these ideas is reported in [93], and preliminary
work on the Ne2OH ~X-state has been performed, in the hope to start deciphering the
electronic spectrum for this complex.
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The final question of potentials is also the most challenging one. We began this work
looking at doped rare-gas clusters primarily because we could develop models for the
potential surfaces as pair-wise sums of atom–atom or atom–molecule interactions.
With time we have moved into other systems, but our choices of systems are limited
by the availability of potential surfaces. While the calculations that are needed to
evaluate the electronic energies of a system at a variety of points are well developed,
taking this information and extracting a potential surface from it is much less so.
In addition to Bowman and co-workers [50, 56, 57], with whom we have collaborated
on much of the work described here, Jordan and co-workers have made good progress
using DMC to choose points to perform electronic structure calculations and from that
generate a potential by Shepherd interpolation techniques [94].

While considerable progress has been made in the applications of DMC approaches
to studies of fluxional species, there are still a number of open issues and challenges.
As computers and theoretical approaches that exploit advances in computer technology
advance, larger and larger systems will be accessible by basis-set approaches, but as this
happens, DMC should remain an attractive approach for exploring those systems that
are at the edge of what is possible.
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